Development, Installation, Testing and Demonstration of a Combined Cooling Heating & Power System at Floyd Bennett Field

Dennis R. Landsberg

Project Manager

Landsberg Engineering, P.C.

Clifton Park, NY

3rd Annual National CHP Roadmap - October 24, 2002

CHP Project at Floyd Bennett Field

- Floyd Bennett Field
- Project Development
- Description of Floyd Bennett Field Project
- Design Issues
- Project Status

Floyd Bennett Field

- Part of Gateway National Recreation Area
- Only National Park with Camping in New York City
- Air Field Was Historically Important in the 1930s and 1940s
- Park Includes Pine Forests and Wetlands
- NPS Center for Sustainable Design in Eastern Half of the U.S.

Project Development

- Facility Energy Audit Performed
- Park is pursuing adaptive re-use of existing buildings
- Interest in Energy efficiency Projects
- Interest in Public Education and Demonstration

Floyd Bennett Field

- Landsberg Engineering, Inc. Project Manager
- Originally 6 30-kW Capstone Microturbines
- Heat recovery: space heating and cooling
- Funding:
 - NYSERDA: \$425,000
 - National Park Service: \$200,000
 - KeySpan Energy R&D: \$100,000
 - Oak Ridge National Lab \$100,000 In-Kind
 - Office of Power and Technology: \$50,000
 - FEMP \$50,000

Building Description

- Two story 17,000 sf
- Building to be developed as a Human Ecology Laboratory
- Requires 40 tons of cooling
- Heating system is 650 MBH output
- 60# gas available at building line
- Existing hvac system is 4-pipe fancoil

Design Issues

- 30 kW vs 60 kW Turbines
- Water Chiller vs Direct-Fired Chiller
- Ducting Through Heat Exchanger to Chiller
- Stand Alone Operation

Design Issues 30 kW vs 60 kW Turbines

- 30 kW Advantages
 - No compressors needed 60 psi gas available
 - Longer experience with unit (but being phased out)

Design Issues 30 kW vs 60 kW Turbines

- 60 kW Advantages
 - Produces 60 kW while powering compressors
 - Lower installed cost including compressors
 - Peak power output up to to 82F vs 58F outside air temperature for 30 kW
 - 2.5% more power production in NYC climate
 - Lower maintenance costs

Design Issues 30 kW vs 60 kW Turbines

Turbine Performance

30 kW

Inlet Air Temperature (deg C)

10 0 10 20 30 40 50

Net Power

Net Efficiency

15 Net Efficiency

15 psig natural gas

5 psig natural gas

16 psig natural gas

17 psig natural gas

18 psig natural gas

19 psig natural gas

10 psig natural gas

60 kW

Design Issues Water Chiller vs Direct-Fired Chiller

- Direct-Fired Chiller
 - Eliminates need for heat exchanger for cooling
 - Can eliminate need for heat exchangers in new building (180F water needed for heating)
 - Broad Direct-Fired Chiller less costly than
 Yazaki, but air damper makes pricing roughly
 equal

Design Issues Water Chiller vs Direct-Fired Chiller

- Water Chiller
 - Requires heat exchanger for operation
 - 10-ton Yazaki units used to date expensive to buy and install
 - 40-ton Yazaki more costly than Broad directfired unit
- Direct-Fired selected advances state-of-art

60 kW Capstone with Broad Chiller

Design Issues Ducting Exhaust To Chiller

- Ducting Through Heat Exchanger
 - Less complex system
 - With Unifin HX adds 4" water back pressure (8" maximum for turbine) in-line fan needed
 - Use Cain heat exchanger less back pressure
- Ducting Around Heat Exchanger
 - More costly and complex system
- Probably Duct Through Cain Heat Exchanger

Project Status

- Pre-Monitoring Completed
- Design Nearing Completion
- Construction to Begin in November
- Startup Planned for Spring 2003
- Visitor's Display Planned